kosher&Halal Certification banner 首页 cRc Kosher Kosher认证 常见问题 业界新闻 联系我们
Star of David
Kosher Regulations
Kosher Agency
Inspection Success
Steps to Certification
News and Events



Halachic Concerns(Microorganisms: enzymes & yeasts)



It is the fermentation process of enzyme production that poses an entire series of Halachic issues. A brief discussion of the process is now in order. Microorganisms, be they fungi, bacteria, or yeast are living entities, which are referred to as "cultures".

They are isolated from nature and chosen for their desired characteristics, or they are modified using genetic engineering. The organism must then be preserved, which is typically done by freezing. Various chemicals can be used to protect the organism, which are of concern in Kosher certification (see below). For production of the enzyme, the organism is inoculated into a nutrient medium that allows die organism to propagate and develop a sufficiently large population to produce the enzyme efficiently.

Since these organisms are living cells, they must be fed a diet that is conducive to their well-being. This propagation may consist of growing die organism in flasks of nutrient broth, on an agar surface containing nutrients, or both. When appropriate growth has been achieved, the culture is then added to a large ferment or where it is allowed to grow and produce the enzymes.

There are and are two types of such enzyme productions, intracellular and extracellular. Intercellular production means that the organism producers the enzyme within its cell walls, which must then by lysed (broken open) to harvest the enzyme.

Extracellular production means that the organism secretes the enzyme through its cell wall as part of its metabolism, and is recovered from the media in which it grows. At the end of the fermentation, certain chemical and filtering processes are used to separate the enzyme from the dead organisms and other waste material, and the enzyme concentrate is then blended with chemical preservatives to make a finished product.

Enzymes are also distinguished in their use between immobilized and non-immobilized enzymes. The definition of a catalyst is that it aids in a chemical reaction but does not become part of it. As such, it should be available for reuse many times. An immobilized enzyme is one in which the active enzyme is attached to an inert substrate, such as a plastic bead and usually placed in a reaction column.

The liquid that is to be modified with the aid of the enzyme is passed through this column and comes into contact with this treated plastic bead. Such an arrangement allows for the enzyme to be used for long periods without being replenished. A non-immobilized enzyme is a liquid or powder that is added directly to the product to be modified. Typically, there is no means of recovering this enzyme, so it remains in the finished product.

The primary issue involved in determining the Kosher status of such enzymes is whether or not the media on which the organism is grown must be Kosher. This has been the subject of much discussion in recent years, the "vinegar controversy" being a notable example. It has been argued that these microorganisms can be considered as a Halachic Cow, and just as we are not concerned with a cow's diet when permitting its milk, so too we should not be concerned with the nutrients consumed by the microorganism as it produces an enzyme.

The consensus of the Poskim is, however, that the enzyme has the Halachic status of the media on which it was grown. This is similar to the Halachic approach we take when we ferment Chometz into alcohol where we consider the alcohol to be Chometz.

The second issue is one of Ayn Mevatlin Issur L'Chatchila (purposefully nullifying a prohibited substance through dilution). Again, the accepted Halachic position is that a Kosher certified may not be produced with even small amounts of non-Kosher material even if a non-Jewish company is adding minute amounts of this non-Kosher material for its own purposes.

As such, we insist that all ingredients used in the growth process of the microorganism, from the early flask to the final ferm